核心关键点:
• 人力资源部应更有意地收集整理工作场所数据
• 侧重于绩效预测指标而不是一般绩效审核
• 数据分析需要特定、明确的结果
这是数据时代,数据分析正在彻底改变人力资源。
埃森哲计算从数字可用的工作场所数据的新来源来看,大型上市公司在美国有3.1万亿美元的收入机会。
但是,人力资源部是否准备好此机会?
长期以来,人力资源一直被视为”硬”数据的保管人,如用工成本、离职成本、缺勤率、劳动力成本等。所有这些信息都至关重要,但这些信息都是衡量业绩和生产力的滞后指标。等到数据出来的时候,再想改变策略已经太晚了。
HR可以—而且应该是—-更有意地转化领先指标劳动力数据。
要做到这一点,CHRO必须更加努力地推动核心人员分析,特别是在战略绩效和人才管理方面。对战略人力资源组织来说,维护数据的日子已经过去了。
CHRO必须更加努力地推动核心人员分析,尤其是在战略绩效和人才管理方面。
CHROs must drive core people analytics harder, particularly concerning strategic performance and talent management.
充分利用绩效领先指标 Fully Leverage Leading Indicators of Performance
战略分析需要领先指标和整理、综合和分析数据的能力。人力资源部还要求授权部门通过绩效分析实施真正的组织变革。但是,为了做到这一点,人力资源部门需要非常具体的数据。
例如,根据盖洛普的研究,只有29%的员工强烈认同他们的绩效评估是公平的,26%的员工强烈同意他们的绩效评估是准确的。然而,很少有人说,他们被管理的方式,激励他们做出色的工作。这些精细的详细信息与组织级绩效和增长问题一起出现。
人力资源部应了解其组织中每个指标的百分比。这些数据解释了预测绩效的因素(如员工敬业度、人才绩效、更替驱动因素等),帮助领导者了解在仍有机会时可以改变哪些因素。
但是,人力资源部门有很多方法可以帮助领导者真正利用预测分析的力量,并加快质量决策。但是,关键是要确定最少的员工和员工绩效指标,这些指标对关键结果提供最大的解释能力。根据我们的经验,以下步骤至关重要:
1. 审核和组织来自多个来源和年份的现有数据到单个数据库(劳动力、运营和业务数据)。
2. 利用高级分析确定哪些指标对关键业务成果(即营业额、生产率、销售额、盈利能力)以及数据质量最高的指标最可靠、最有指示性和预测性。
3. 使用裁员指标的缩减列表来监控和预测业务绩效、通知战略更改以及确定干预和变革计划的优先级。重点回答有助于业务推动价值的基本问题。例如:我们如何有效地根据申请人数据预测特定职位的人才招聘质量?哪些因素增加了顶尖人才留在公司并继续表现的可能性?
领导者重视这种战略分析,因为它有助于他们做出正确的决策。尽管如此,人力资源部门需要更好地使用此类分析来讲述公司长期价值(与其战略目标一致)的故事,而不是仅基于描述性分析的狭隘的短期员工增强计划。
破解人才分析 Disrupt Talent Analytics
例如,考虑人才管理讨论。根据我们的经验,人才审查是经常、持续滥用的一个领域。长期以来,大多数公司都依赖于将人才分为”九盒”模式,这种模式将人才分为顶尖人才、一贯的超级明星或表现稳健的超级明星以及表现不佳的类别。
没什么不对的。但数据的质量和客观性令人担忧。
传统上,”高潜力”员工被评定为反映一组能力。员工的经理指定了该标签,但经理的评价往往充满了偏见。整个评估过程需要几个月才能完成。之后是无休止的等待行政投入,最后,个人发展计划的制定。与此同时,员工们也继续行动;发展投入迟迟或不相关。
漫长而繁琐的传统人才审查过程需要被打乱。首先是评估和分析更客观的潜在指标。但是,一旦完成了客观的审核,人力资源部门就可以更快地将评估洞察转化为真正的发展计划,特别是帮助顶尖人才的经理在与每位员工的辅导对话中定期使用这些见解。与现在一样,只有 23% 的员工强烈同意他们的经理提供有意义的反馈,让他们等待几个月才能进行有偏见的评估,这是提高绩效的可疑方法。
冗长、繁琐的传统人才评审流程需要被打乱。这要从评估和分析更客观的潜力指标开始。
The long, cumbersome traditional talent review process needs to be disrupted. This starts with the assessment and analysis of more objective indicators of potential.
谷歌(Google)是一家基于硬分析的所有决策的公司,为更好地利用数据提供了一个很好的例子。早期,Google 人员分析团队想出了一个算法来优化软件工程师的关键晋升决策。
该算法用于做出令人印象深刻的 90% 的促销决策。但是工程师们想要更高的透明度,而算法不是答案。因此,谷歌停止了该计划。公司知道人们应该做出决策,而分析只是为了用最可靠的见解来武装决策者。从本质上讲,拥有正确的数据与拥有足够的数据是需要记住的关键。
将数据分析与长期目标联系起来
HR 创新使用预测数据分析应具有明确定义的结果,所有项目都应采用。但是,为了达到最大效用,这些可交付成果需要与特定的客户、运营和业务成果以及组织层面的结果(如上市时间、缩短周期时间、快速产品创新或加速质量改进)相关联。
为了真正敏捷,人力资源必须超越结果,在领先指标(如客户和员工敬业度指标、人才和发展影响)上持续提高质量。这些是真正推动业务绩效的因素。
在客观数据的支持下,并在管理人员的实时支持下,人力资源部门可以做世界上所有分析都做不到的事情:导致可预测、可衡量、成功的结果。
直截了当地说,人力资源部门有潜力将危机转化为机会,但它必须首先能够将人员分析转化为业务决策。
来源:HRTechChina,盖洛普gallup.com
原文标题:How HR Can Optimize People Analytics
仅供参考,欢迎交流~~~
—END—
了解更多,可关注365云人事